[1]邱丹丹,秦孙巍.三峡库首区在不同库水位条件下滑坡危险性分析[J].防灾科技学院学报,2019,21(03):30-38.
 QIU Dandan,QING Sunwei.Landslide Hazard Analysis of Three Gorges Reservoir Head Regionunder Different Reservoir Water Levels[J].JOURNAL OF INSTITUTE OF DISASTER PREVENTION,2019,21(03):30-38.
点击复制

三峡库首区在不同库水位条件下滑坡危险性分析()
分享到:

《防灾科技学院学报》[ISSN:1673-8047/CN:13-1377/P]

卷:
第21卷
期数:
2019年03期
页码:
30-38
栏目:
目次
出版日期:
2019-04-11

文章信息/Info

Title:
Landslide Hazard Analysis of Three Gorges Reservoir Head Region under Different Reservoir Water Levels
文章编号:
1673-8047(2019)01-0030-09
作者:
邱丹丹秦孙巍
武汉工程大学,湖北 武汉 430205
Author(s):
QIU Dandan QING Sunwei
Wuhan Institute of Technology, Wuhan 430205, China
关键词:
三峡库区 水位 滑坡 危险性 灾害
Keywords:
Three Gorges Reservoir water level landslide hazard disaster
分类号:
P642.22
文献标志码:
A
摘要:
长江三峡库区地质条件复杂,是我国滑坡灾害的多发区之一,其库水位变化对库区内的斜坡体稳定性有直接关系。针对不同库水位条件下的区域性滑坡危险性分析展开研究,在构建滑坡危险性定量计算模型的基础上分析比较了三峡库首区两个典型时期的滑坡危险性变化。首先利用地理信息系统和遥感软件平台分析处理滑坡及危险性因子数据,再结合程序软件完成基于模型的定量计算。具体包括基于相关向量机的数据耦合模型计算滑坡易发性,利用诱发因子数据推理拟合模型并推算滑坡时间频率,结合滑坡特征计算滑坡强度,最后将三者综合得到危险性定量结果并制作危险分区图。研究结果表明,基于危险性模型计算的滑坡危险性结果与实际情况相符,且库水位提升增加了滑坡的危险性,水位对土质滑坡的影响大于岩质滑坡。
Abstract:
Three Gorges Reservoir with complex geological structure, is one of the landslide-prone areas. The change of reservoir water level is directly related to the stability of slopes in the reservoir area. But at present, the research on the relationship between reservoir water level and landslide stability is mainly concentrated on single landslide, and the research on the relationship between regional landslide is less. We study the regional landslide hazards under different reservoir water levels, and analyze landslide hazard changes in the Three Gorges Reservoir head region during two typical periods on the basis of the quantitative calculation model of landslide hazard. Firstly, the landslides and hazard related factors data are processed by means of the Geographical Information System and the Remote Sensing Software Platform. Secondly, model-based hazard quantitative calculations are calculated by the program software. It includes the calculation of landslide susceptibility based on the data coupling model of correlation vector machine, the calculation of the landslide time frequency based on deducing fitting model by using induced factor data, and the calculation of landslide strength combined with landslide characteristics. Finally, the quantitative results of hazards are synthesized and hazard zoning maps are made. The results show that the landslide hazard result calculated by the hazard model corresponds with the actual situation, the rise of the water level will increase the landslide hazard, and water level exerts a greater impact on soil landslide than on rock landslide.

参考文献/References:

[1] Guzzetti F, Carrara A, Cardinali M, et al. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy [J]. Geomorphology, 1999, 31(1-4): 181-216.
[2] AGS, Landslide risk management concepts and guidelines[J]. Australian geomechanics society landslide taskforce landslide zoning working group Australian Geomechanics, 2000, 35(1):49-92.
[3] Fell R, Corominas J, Bonnard C, et al. Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning [J]. Engineering Geology, 2008, 102(3/4): 85-98.
[4] Frattini P, Crosta G B, Fusi N, et al. Shallow landslides in pyroclastic soils: a distributed modelling approach for hazard assessment [J]. Engineering Geology, 2004, 73(3-4): 277-295.
[5] Xie M, Esaki T, Cai M. A time-space based approach for mapping rainfall-induced shallow landslide hazard [J]. Environmental Geology, 2004, 46(6-7): 840-850.
[6] Chauhan S, Sharma M, Arora M K, et al. Landslide susceptibility zonation through ratings derived from artificial neural network [J]. International Journal of Applied Earth Observation and Geoinformation, 2010, 12(5): 340-350.
[7] 邱丹丹,牛瑞卿,赵艳,,等.斜坡单元支持下地震滑坡危险性区划——以芦山地震为例[J].吉林大学学报(地球科学版),2015,45(05):1470-1478.
[8] 赵艳南,牛瑞卿.基于证据权法的滑坡危险性区划探索[J].地理与地理信息科学,2010,26(6):19-23.
[9] 于晓辉,林玲玲,李静,等. 基于GIS的中秦岭地区滑坡灾害易发性研究[J].防灾科技学院学报,2010,12(4):104-111.
[10] 高华喜.区域滑坡灾害危险性时间预测研究[J]. 湖南科技大学学报(自然科学版),2010, 25(3): 47-49.
[11] Guzzetti F, Ardizzone F, Cardinali M, et al. Landslide volumes and landslide mobilization rates in Umbria, central Italy [J]. Earth and Planetary Science Letters, 2009, 279(3-4): 222-229.
[12] 谭建民,韩会卿,伏永朋. 库水位升降条件下滑坡的稳定性极小状态—以三峡库区为例[J]..工程勘,2012(4):42-54.
[13] 高连通,易夏玮,李喜,等. 三峡库区典型滑坡变形与高水位涨落关系研究[J].地质科技情报,2011,30(4):132-136.
[14] 湖北省地质矿产局.1:20万巴东幅(H~49~Ⅸ)区域地质调查报告[R].1984.
[15] 地质矿产部编写组.长江三峡工程库岸稳定性研究[M].北京:地质出版社,1988.
[16] 唐胜传,柴贺军,冯文凯.三峡库区岸坡类型划分[J].公路交通技术,2005(5):36-39.
[17] 赵榈.相关向量机优化方法的研究[D].南宁:广西大学,2012.
[18] 柳长源.相关向量机多分类算法的研究与应用[D].哈尔滨:哈尔滨工程大学信息与通信工程学院,2013.
[19] 王红,涂方旭.广西一日最大降水量的极值分布[J].广西气象,1993,14(4):37-42.
[20] 唐亚明,张茂省,李林,等.滑坡易发性危险性风险评价例析[J].水文地质工程地质,2011,38(2):125-129.
[21] 彭令.三峡库区滑坡灾害风险评估研究 [D].武汉:中国地质大学,2013.

备注/Memo

备注/Memo:
收稿日期:2018-10-09 基金项目:湖北省教育厅科学技术研究项目(B2018047); 武汉工程大学校内科学研究基金项目(K201854) 作者简介:邱丹丹(1981-),女,博士,讲师,主要从事空间技术与地质灾害交叉方向的研究.
更新日期/Last Update: 2019-04-11